nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 04, v.40 15-25
超级早稻叶片腹、背面光合特性研究
基金项目(Foundation): 国家自然科学基金项目(31871704); 湖南省揭榜挂帅项目(2022NK1010); 长沙市自然科学基金项目(Kq2402171); 杂交水稻全国重点实验室自主研究项目(2022MS11)
邮箱(Email): changshuoqi@126.com;
DOI: 10.16267/j.cnki.1005-3956.20241219.292
摘要:

利用自主研发的水稻腹、背光合作用测量系统方法,对超级早稻叶片腹、背面光合特性和光合产物转运等的差异进行研究。结果表明,4个供试超级早稻叶片腹、背面净光合速率、蒸腾速率、水分利用效率均存在显著差异,其中2个常规稻品种叶片腹面净光合速率高于背面,而2个杂交稻品种叶片背面净光合速率高于腹面,且随着光量子通量密度的增加,腹、背面间光合效率差异减小。水稻叶片腹、背面光合特性差异受气孔密度、叶片厚度等影响显著,其中叶片背面气孔密度大、光合潜力大,对整叶的光合效率贡献更大。在水稻育种工作中应注重优化叶片背面的光环境,提高背面的光合能力,从而提高水稻群体光合效率,实现产量提高。

Abstract:

A self-developed rice measurement system for adaxial and abaxial photosynthesis was used to study the differences in photosynthetic characteristics and photosynthate distribution between the adaxial and adaxial surfaces of the leaves of super early rice. The results showed that there were significant differences in the net photosynthetic rate,transpiration rate and water utilization efficiency between the adaxial and abaxial surfaces of the leaves of four super early rice varieties. Two inbred rice varieties had the net photosynthetic rate of the adaxial surface higher than that of the abaxial surface, while two hybrid rice varieties had the net photosynthetic rate of the abaxial surface higher than that of the adaxial surface. The difference in photosynthetic efficiency between the adaxial and abaxial surfaces decreased as the photosynthetic photon flux density increased. The differences in photosynthetic characteristics between the adaxial and abaxial surfaces of rice leaves were significantly affected by stomatal density and leaf thickness. The abaxial surface with a higher stomata density and stronger photosynthetic potential showed a larger contribution to the photosynthetic efficiency of the whole leaf. In rice breeding, more attention should be paid to optimizing the light environment of the abaxial surface and enhancing the photosynthetic capacity of the abaxial surface, thus improving the photosynthetic efficiency of the rice population and achieving higher yields.

参考文献

[1]袁隆平.发展超级杂交水稻保障国家粮食安全[J].杂交水稻,2015,30(3):1-2.

[2] TANG L, RISALAT H, CAO R, et al. Food security in China:A brief view of rice production in recent 20 years[J]. Foods,2022,11(21):3324.

[3] ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences,2015,112(28):8529-8536.

[4] LONG S P, MARSHALL-COLON A, ZHU X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential[J]. Cell, 2015,161(1):56-66.

[5] SLATTERY R A, WALKER B J, WEBER A P M, et al. The impacts of fluctuating light on crop performance[J]. Plant physiology, 2018,176(2):990-1003.

[6] YIN X Y, STRUIK P C. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops:From leaf biochemistry to canopy physiology and crop ecology[J].Journal of experimental botany, 2015,66(21):6535-6549.

[7] DRISCOLL S P, PRINS A, OLMOS E, et al. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves[J]. Journal of experimental botany, 2006,57(2):381-390.

[8] SUN J, NISHIO J. Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves[J]. Plant&cell physiology,2001,42(1):1-8.

[9] EVANS J R, VOGELMANN T C. Photosynthesis within isobilateral Eucalyptus pauciflora leaves[J]. New phytologist,2006,171(4):771-782.

[10]袁隆平.超级杂交稻研究进展[J].农学学报, 2018,8(1):80-82.

[11]许大全,朱新广.创造“玉米稻”:禾谷作物高产优质的一个新战略[J].植物生理学报, 2020,56(7):1313-1320.

[12]常硕其,石丹丹,欧阳翔.一种诱导单面叶片光合作用装置:CN 114814104B[P]. 2024-07-19.

[13]国家水稻数据中心.农业农村部冠名的超级稻示范推广品种[EB/OL].(2024-06-30)[2024-12-19]. https://www.ricedata.cn/variety/superice.htm.

[14] XIAO M L, ZANG H D, LIU S L, et al. Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems:A 13C-CO2 pulse labeling study[J]. Plant and soil, 2019,445(1):101-112.

[15]常硕其,朱新广,欧阳翔.一种可调节用于植物光合作用同位素标记装置:CN 113063903A[P]. 2021-07-02.

[16] ZHU Z K, GE T D, XIAO M L, et al. Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content[J]. Plant and soil, 2017,410(1):247-258.

[17] WA L L S, L E M O N N I E R P, M I L L I K E N A L, e t a l.Simultaneous and independent abaxial and adaxial gas exchange measurements[J]. Methods in molecular biology, 2024,2790:63-76.

[18] RICHARDSON F, JORDAN G J, BRODRIBB T J. Leaf hydraulic conductance is linked to leaf symmetry in bifacial,amphistomatic leaves of sunflower[J]. Journal of experimental botany, 2020,71(9):2808-2816.

[19] WALL S, VIALET-CHABRAND S, DAVEY P, et al. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat[J]. New phytologist,2022,235(5):1743-1756.

[20]石丹丹.杂交水稻叶片背、腹面光合特性研究[D].长沙:湖南大学, 2023.

[21] MOTT K A, PEAK D. Effects of the mesophyll on stomatal responses in amphistomatous leaves[J]. Plant, cell&environment,2018,41(12):2835-2843.

[22] XIONG D L, FLEXAS J. From one side to two sides:The effects of stomatal distribution on photosynthesis[J]. New phytologist,2020,228(6):1754-1766.

[23] MCAUSLAND L, VIALET-CHABRAND S, DAVEY P, et al. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency[J]. New phytologist,2016,211(4):1209-1220.

[24] LAWSON T, VIALET-CHABRAND S. Speedy stomata,photosynthesis and plant water use efficiency[J]. New phytologist,2019,221(1):93-98.

[25] SACK L, SCOFFONI C, JOHN G P, et al. Leaf mass per area is independent of vein length per area:Avoiding pitfalls when modelling phenotypic integration(reply to Blonder et al.2014)[J]. Journal of experimental botany, 2014,65(18):5115-5123.

[26] MáRQUEZ D A, STUART-WILLIAMS H, WONG S C, et al.An improved system to measure leaf gas exchange on adaxial and abaxial surfaces[J]. Bio-protocol, 2023,13(11):e4687.

[27] CAMPANY C E, TJOELKER M G, VON CAEMMERER S, et al. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks[J].Plant, cell&environment, 2016,39(12):2762-2773.

[28] H A R R I S O N E L, A R C E C U B A S L, G R AY J E, e t a l.The influence of stomatal morphology and distribution on photosynthetic gas exchange[J]. The plant journal,2020,101(4):768-779.

[29] PARKHURST D F. Diffusion of CO2 and other gases inside leaves[J]. New phytologist, 1994,126(3):449-479.

[30] DING M, ZHU Y Y, KINOSHITA T. Stomatal properties of Arabidopsis cauline and rice flag leaves and their contributions to seed production and grain yield[J]. Journal of experimental botany, 2023,74(6):1957-1973.

[31] ROCKWELL F E, HOLBROOK N M, STROOCK A D.The competition between liquid and vapor transport in transpiring leaves[J]. Plant physiology, 2014,164(4):1741-1758.

基本信息:

DOI:10.16267/j.cnki.1005-3956.20241219.292

中图分类号:S511.31

引用信息:

[1]粟琳,石丹丹,宁文等.超级早稻叶片腹、背面光合特性研究[J].杂交水稻,2025,40(04):15-25.DOI:10.16267/j.cnki.1005-3956.20241219.292.

基金信息:

国家自然科学基金项目(31871704); 湖南省揭榜挂帅项目(2022NK1010); 长沙市自然科学基金项目(Kq2402171); 杂交水稻全国重点实验室自主研究项目(2022MS11)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文