578 | 0 | 147 |
下载次数 | 被引频次 | 阅读次数 |
盐胁迫是影响水稻产量的重要原因之一,为探究不同盐浓度胁迫对杂交水稻物质积累、转运及产量形成的影响,以2个耐盐水稻品种(湘两优900和晶两优534)和1个盐敏感水稻品种(隆两优8612)为材料,用天然海水与淡水混合调配,设置0.0%(CK)、0.3%和0.6%共3个盐浓度处理。结果表明,随着盐浓度增加,各水稻品种的产量及产量构成因子均显著下降,同一盐浓度下,耐盐水稻的产量更高。在0.3%盐浓度下,隆两优8612、湘两优900和晶两优534分别比CK减产75.0%、56.6%和43.8%;在0.6%盐浓度下,隆两优8612、湘两优900和晶两优534分别比CK减产92.0%、77.8%和72.9%。此外,耐盐品种通过保持较高的K+/Na+比值,维持离子平衡,同时具有较高的生长速率及茎、叶转运速率,其穗颈节间维管束面积也高于盐敏感品种。综上,在0.3%、0.6%盐浓度下,耐盐品种的生理表现较好,且穗颈维管束系统优于盐敏感品种,有利于水稻的物质积累与转运,提升产量。
Abstract:Salt stress is one of the important factors that affect rice yield. In order to investigate the effects of salt stress on the accumulation and transport of dry matter and the yield formation of hybrid rice, two salt-tolerant rice varieties(Xiangliangyou 900 and Jingliangyou 534) and one salt-sensitive rice variety(Longliangyou 8612) were used as the materials, and three treatments of salt concentration at 0.0%(CK), 0.3% and 0.6%, mixed with natural seawater and fresh water, were set. The results showed that the yield and yield components of rice varieties decreased significantly with the increase of salt concentration, and the yield of salt-tolerant rice was higher under the same salt concentration.At 0.3% salt concentration, Longliangyou 8612, Xiangliangyou 900 and Jingliangyou 534 yielded 75.0%, 56.6% and 43.8% less than CK, respectively. At 0.6% salt concentration, Longliangyou 8612, Xiangliangyou 900 and Jingliangyou 534 yielded 92.0%, 77.8% and 72.9% less than CK, respectively. In addition, compared with the salt-sensitive variety,the salt-tolerant varieties maintained the ion balance by keeping a higher K+/Na+ ratio, and had a higher crop growth rate and transport rate of stem and leaf, and a higher vascular bundle area of the panicle neck internode. In conclusion, the physiological performance and the vascular bundle system of panicle neck of the salt-tolerant varieties are better than those of the salt-sensitive variety at 0.3% and 0.6% salt concentrations, which is conducive to dry matter accumulation and transport, and increases the yield of rice.
[1]李保国.新时代下盐碱地改良与利用的科学之路[J].中国农业综合开发, 2022(1):8-9.
[2]王洋,张瑞,刘永昊,等.水稻对盐胁迫的响应及耐盐机理研究进展[J].中国水稻科学, 2022,36(2):105-117.
[3]张晔.答好盐碱地里的“数学题”[N].科技日报, 2023-11-01(7).
[4]殷文晶,芦涛,陈振概,等.水稻耐盐的生理机制与遗传育种研究进展[J].浙江师范大学学报(自然科学版), 2023,46(3):307-315.
[5]王才林,张亚东,赵凌,等.耐盐碱水稻研究现状、问题与建议[J].中国稻米, 2019,25(1):1-6.
[6] HAN CHUNNING, CHEN GUANJIE, ZHENG DIANFENG,et al. Transcriptomic and metabolomic analyses reveal that ABA increases the salt tolerance of rice significantly correlated with jasmonic acid biosynthesis and flavonoid biosynthesis[J].Scientific reports, 2023,13(1):20365.
[7]孙彤,杜震宇,张瑞珍,等.松嫩平原盐碱土盐碱胁迫对水稻分蘖及产量的影响[J].吉林农业大学学报, 2006(6):597-600, 605.
[8]程生海,郭夏宇,陶维旭,等.不同耐盐能力水稻品种响应盐胁迫的差异[J].杂交水稻, 2024,39(2):97-104.
[9]梁正伟,杨福,王志春,等.盐碱胁迫对水稻主要生育性状的影响[J].生态环境, 2004(1):43-46.
[10] KHAN M A, ABDULLAH Z. Salinity–sodicity induced changes in reproductive physiology of rice(Oryza sativa)under dense soil conditions[J]. Environmental and experimental botany,2003,49(2):145-157.
[11]杨福,梁正伟,王志春,等.水稻耐盐碱品种(系)筛选试验与省区域试验产量性状的比较[J].吉林农业大学学报, 2007,29(6):596-600.
[12]余为仆.秸秆还田条件下盐胁迫对水稻产量与品质形成的影响[D].扬州:扬州大学, 2014.
[13]颜佳倩,顾逸彪,薛张逸,等.耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J].作物学报, 2022,48(6):1463-1475.
[14]江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系[J].应用生态学报, 2004,15(2):226-230.
[15]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学, 1993(6):1-11.
[16]周红英,张桂莲,肖应辉,等.超大穗型水稻R1126及其组合穗颈输导组织与籽粒灌浆结实的关系[J].中国水稻科学,2014,28(4):411-418.
[17]胡博文.盐胁迫对水稻碳代谢及产量形成的影响[D].哈尔滨:东北农业大学, 2019.
[18]许阳东,朱宽宇,章星传,等.绿色超级稻品种的农艺与生理性状分析[J].作物学报, 2019,45(1):70-80.
[19]李国辉.水稻茎鞘非结构性碳水化合物积累转运和颖果韧皮部卸载机理[D].武汉:华中农业大学, 2019.
[20]裘波音,李大忠,林珲,等.不同果肉厚度的苦瓜种质细胞大小和形态差异分析[J].福建农业科技, 2023,54(3):14-19.
[21]谷娇娇.盐胁迫对水稻氮代谢及产量的影响[D].哈尔滨:东北农业大学, 2019.
[22]赵鹏.盐分胁迫条件下水稻生长性状试验影响研究[D].天津:天津农学院, 2020.
[23]荆培培,崔敏,秦涛,等.土培条件下不同盐分梯度对水稻产量及其生理特性的影响[J].中国稻米, 2017,23(4):26-33.
[24]张瑞珍,邵玺文,童淑媛,等.盐碱胁迫对水稻源库与产量的影响[J].中国水稻科学, 2006(1):116-118.
[25]翟彩娇,张蛟,崔士友,等.盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J].中国农学通报, 2022,38(4):1-9.
[26]栾金华.盐胁迫对粳稻农艺性状的影响及耐盐品种筛选[D].沈阳:沈阳农业大学, 2020.
[27]周振玲,林兵,周群,等.耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J].中国水稻科学, 2023,37(2):153-165.
[28]欧阳慧,杨贤莉,王立志,等.水稻抗倒伏性评价方法及机理的研究现状与展望[J].中国稻米, 2023,29(2):12-17.
[29]杨国涛,赵祥,韦叶娜,等.重穗型水稻品种物质积累及转运特性研究[J].广东农业科学, 2017,44(8):1-6.
[30]庄文,李诚,常硕其,等.超级杂交稻冠层形态结构与干物质生产特性研究[J].杂交水稻, 2016,31(4):67-70.
[31]矫金航,张雅琳,王赞彭,等.水稻耐盐响应中钾运输载体的研究进展[J].西北植物学报, 2023,43(10):1791-1800.
[32]张金林,王锁民,陈托兄,等.烯效唑(S3307)对大麦整株水平Na+、K+选择性和游离脯氨酸分配的影响[J].麦类作物学报, 2008(4):655-660.
[33]杨辉,白天亮,朱春艳,等.盐胁迫下水稻种质资源Na+、K+平衡和SKC1单倍型分析[J].植物遗传资源学报, 2023,24(4):1085-1096.
[34] LIAN WENLI, GENG ANJING, WANG YIHAN, et al. The molecular mechanism of potassium absorption, transport, and utilization in rice[J]. International journal of molecular sciences,2023,24(23):16682.
[35]朱克明.水稻直立穗基因EP2的克隆与功能分析[D].扬州:扬州大学, 2009.
[36]黄璜.水稻穗颈节间组织与颖花数的关系[J].作物学报,1998(2):193-200.
[37]徐正进,陈温福,曹洪任,等.水稻穗颈维管束数与穗部性状关系的研究[J].作物学报, 1998(1):47-54.
[38]周驰燕,李国辉,许轲,等.不同类型水稻品种茎叶维管束与同化物运转特征[J].作物学报, 2022,48(8):2053-2065.
[39]李国辉,张国,崔克辉.水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系[J].植物生理学报, 2019,55(3):329-341.
基本信息:
DOI:10.16267/j.cnki.1005-3956.20240111.018
中图分类号:S511
引用信息:
[1]范文程,魏中伟,金文雨等.杂交水稻在不同盐浓度下的产量形成和生理响应[J].杂交水稻,2024,39(05):87-96.DOI:10.16267/j.cnki.1005-3956.20240111.018.
基金信息:
海南省重大科技计划(ZDKJ202001)